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. 
1. PROJECT OBJECTIVES . 

L 

The objective of this project is to c a r r y  out an integrated experimental and 

analytical study of resonance integrals and Doppler coefficients of various sam- 

ples of natural  tungsten, separated-tungsten isotopes, and UO -tungsten fuel. 

Measurements of resonance integrals and Doppler coefficients a r e  made in  

the 10.6-in. lattice of the Sodium Graphite Reactor Crit ical  Assembly (SGR-CA), 

in which the flux spectrum in the resonance region is approximately 1/E. 

reactivity and activation methods are  used; the reactivity oscillator is caii- 

brated with the known resonance integral of gold, and in addition, the resonance 

integral of W 186 will be measured over a limited temperature range by the acti-  

vation technique. 

2 

Both 

Resonance integrals and Doppler coefficients for each sample a r e  being cal- 

culated with TRIX-l, a fast-running resonance-integral code. Other methods, 

such as the RIFF-RAFF and ZUT-TUZ codes, o r  Monte Carlo calculations, will 

be used as a check and to  investigate some possible problem areas .  
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11. SUMMARY AND EVALUATION 

The spectra of real  and adjoint fluxes at the sample position at the center of 

the Sodium Graphite Reactor Critical Assembly (SGR-CA) have been calculated 

with a one-dimensional diffusion code using 15 energy groups. Fifteen-group 

sample c ross  sections have been calculated for a number of sample materials 

and sizes.  

been used in a perturbation-theory calculation of sample reactivities and Doppler 

coefficients. 

c ross  -section definition appropriate to unperturbed f l w e  s. 

calculations made by using these cross sections were in good agreement with 

most experimental results. 

These c ross  sections, together with the calculated spectra, have 

Some sample c ross  sections have been recalculated by using the 

Perturbation-theory 

Work on a Monte Carlo calculation of resonance inte5rals and Doppler coef- 

ficients has started. 

Self -shielding of the 1 /v  contribution to the resonance integral and reactivity 

effects due to sample thermal expansion have been estimated with the aid of 

Wigner's rational approximation to the escape probability for a lump. 

dicated thermal-expansion effect is quite large for samples not under cadmium. 

The in- 

The f i r s t  set  of radial flux maps using tungsten and gold foils has been com- 

pleted. Tungsten foils have been fabricated for  measurement of the W I g 6  reso-  

nance integral and Doppler coefficient by activation; preliminary measurements 

have started. 

The reactivity of a natural-tungsten slug has been measured a s  a function of 

temperature up to 1250"K, both bare and under cadmium. 

lie on a smooth curve with little scatter. 

precision of about 0.002 to 0.004 cents; the maximum reactivity change from 

room temperature is about 0.12 cents. 

The measured points 

Each reactivity i s  determined with a 

Auxiliary measurements have been carr ied out that demonstrate the insignifi- 

cance of the effects of scattering by heavy elements in the sample. 

Preliminary calibration of the epithermal sensitivity of the oscillator has 

been carr ied out with gold and uranium samples. 

pected to become available shortly that should extend the range of S/M further 

Larger  gold samples a r e  ex- 
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into the region of interest  for  tungsten measurements. 

over a wide range of S/M fo r  gold have been carr ied out on another project; 

when they a r e  analyzed, the results should greatly improve the precision of the 

os cillato r calibration. 

Recent measurements 

The f i r  s t  Doppler -coefficient measurements indicate that the methods used 

a r e  capable of producing consistent, reproducible results with a precision 

approaching 2% at higher temperatures. 

mental, needs to  be done on certain systematic effects, primarily the thermal- 

expa~s icn  reactivity c n ~ f f i ~ i e n t .  

and work is proceeding nearly on schedule. 

has been slower than that which was allowed for in the original schedule, and 

development of high-temperature ovens on the AEC -sponsored Fas t  Doppler 

project has encountered some difficulties. 

what more.  

More work, both analytical and experi- 

Yc! w-a j~r  prnhlerr? a r e a  s have arisen as yet, 

Delivery of samples by Oak Ridge 

These may retard the schedule some- 
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111. PROGRESS DURING REPORT PERIOD 

A. THEORY 

1 .  Spectrum Under Cadmium 

The 15-group analysis of the SGR-CA described in the previous quarterly 

progress  report  has been extended to include the effects of the cadmium sleeve 

at the test position at the center of the core. 

resonance-integral and some Doppler -coefficient measurements. 

sleeve dimensions used in the calculation, 1.27 -in. inside diameter and 0.03 1 -in. 

wall thickness, were those of the actual sleeve. 

one-dimensional7 the sleeve was implicitly assumed to have the full core height; 

whereas, the actual sleeve was only 6 in. high. Results of measurements of 

identical samples with and without cadmium end caps are  almost indistinguish- 

able, as was reported previously; therefore, this approximation should not lead 

to appreciable e r ro r .  

This sleeve is present in all 

TWO of the 

Because the calculation was 

Calculations were made by u s e  of the CAESAR code. Cross  sections and 

reactor  composition and geometry w e r e  identical with those used in the previous 

analysis,") except that the central  void contained an annulus of cadmium a s  de- 

scribed above. 

The cadmium-thickness dependence of the low-energy limit of the epithermal 

spectrum, often described by an effective cadmium cutoff energy, was thus 

taken into account in detailed fashion. 

Ten mesh points were used across  the thickness of this annulus. 

Cadmium multigroup c ross  sections were computed as follows. (Energy and 

lethargy widths of each group a r e  presented in Table 1.) The thermal  (group 15) 

c ros s  section was calculated by averaging pointwise data over a carbon spectrum 

calculated with TEMPEST.(3) Cross sections for  both groups 15 and 14 were 

multiplied by a factor of 0.86 to correct for  the difference in  f l u x  depression 

between diffusion theory and transport theory. 

a model consisting of an infinite slab of cadmium in an infinite graphite medium. 

The final values of ua (Cd) put into CAESAR were 2600, 118, and 4.0 b, for  

groups 15, 14, and 13, respectively. Cross  sections fo r  the low epithermal 

groups (12-14) were obtained by averaging pointwise data f rom the Aldermaston 

nuclear-data tape over a 1 / E  spectrum. 

This factor was computed f rom 

Cross  sections for  higher-energy 
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TABLE 1 

GROUP STRUCTURE USED IN 15-GROUP CALCULATION 

Group 
No. 

Group Boundaries 

Energy 

10.00 Mev 

3.00 Mev 

1.40 Mev 

0.90 ?de" 

0.40 Mev 

0.10 Mev 

17.00 kev 

3.3 54 kev 

Lethargy 

0 

1.204 

1.966 
2.1C8 

3.219 

4.605 

6.377 

8.000 

Group 
No. 

Group Boundaries 

Energy 

3.354 kev 

0.454 kev 

61.44 ev 

22.60 ev 

8.315 ev 

3.059 ev 

1.1256 ev 

0.414 ev 

0.0092 ev 

Lethargy 

8.000 

10.000 

12.000 
--. I ?  no0 - 
14.000 

15.000 

16.000 

17.000 

20.800 

groups were averaged over a carbon spectrum calculated with FORM. (4) The 

cadmium resonance integral w a s  assumed to be 4070 of its infinitely dilute value; 

resul ts  are insensitive to this assumption. 

A comparison of the flux and importance spectra at the test position with and 

without the cadmium sleeve is  presented in Figure 1. 

effect of the cadmium is seen to be the reduction in the importance function for  

the low-energy epithermal groups. 

2. Sample Cross  Sections 

The most significant 

Calculations of expected sample reactivities a r e  car r ied  out with f i rs t -order  

perturbation theory, and require multigroup self-shielded c r o s s  sections for  

each sample, as well as multigroup r ea l  and adjoint fluxes. 

region, these c ros s  sections a r e  calculated with the TRIX code.(5) Multigroup 

c r o s s  sections a r e  defined in  te rms  of fluxes and reaction rates; thus, for the 

i th energy group, the c ros s  section 0. is defined as the number that gives the 

cor rec t  reaction rate  when multiplied by some average f l u x  cp Clearly, the 

value of (T. depends on what kind of average f l u x  i s  used. 

mation in  the resonance region is  to take cp. independent of position ( r )  and 

lethargy (u.); usually more  accurate i s  to set  cp equal to the integral of the 

In the resonance 

1 - 
i' 

A standard approxi- 
1 

1 

1 i 
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Figure 1. Calculated Spectra at Sample Position With and Without Cadmium 

actual f l u x  over the lethargy width of the group, accounting for  flux depletion in 

the resonances. Until 

recently, the second definition was used for calculating sample c ross  sections 

for  this project. F o r  f i rs t -order  perturbation calculations, however, the first 

definition i s  the appropriate one, because the c ros s  section is going to be mul- 

tiplied by the unperturbed flux ( i . e . ,  the flux calculated by CAESAR with the 

sample absent) to obtain the reaction rate. 

some samples have been recalculated with the definition appropriate to 

perturbation calculations. By reducing the calculated reactivities,* this 

Both definitions of 0. a r e  available a s  options in TRIX. 
1 

Effective group c ross  sections for  

*Since the average flux inside the sample is smaller than the unperturbed flux, 
the c ros s  section to give the correct reaction rate  with this flux i s  larger  than 
the corresponding c ross  section for the unperturbed flux, and hence would r e -  
sult in calculated reactivities that were too large. 

NASA-CR-54888 
AI-66 - 16 

9 



recalculation has improved agreement with measured reactivities. 

sults a r e  presented in  Table 2 (Columns 5 and 6) and in Table 3 ,  in the next 

sub s ec tion. 

These r e -  

3. Calculated Reactivities and Doppler Coefficients 

Real and adjoint fluxes f rom the 15-group CAESAR calculations and 15-group 

sample c ros s  sections were used in perturbation calculations of sample reactiv- 

i t ies and Doppler coefficients with the PERT code. (6) In addition to the bare  

and cadmium-sleeve CAESAR analyses discus sed previously, two additional 

CAESAR calculations were carr ied out to gain further insight into the effects 

of the cadmium sleeve on reactivity, one with double cadmium wall thickness 

(0.062 in.) and one with the thermal c ros s  section of cadmium se t  to  zero and 

epithermal c ross  sections corresponding to the original 0.03 l-in. wal l  thick- 

ness. Results of these calculations, together with some experimental results,  

a r e  given in Table 2. 
+ *A- 

The following conclusions can be drawn f rom a comparison of Columns 2-5 

in Table 2. 

a) Epithermal worths a r e  relatively insensitive to cadmium thickness 

(cf Columns 4 and 5). 

s ections a r e  therefor e unimportant . 
Small uncertainties in cadmium thickness or  c ros s  

b) Fluxes and adjoints calculated without cadmium a r e  inadequate for 

calculating worths of samples under cadmium even if  the thermal contribu - 
tion is excluded (Columns 2 a n d  5). 

c) This inadequacy is due to  the influence of the large thermal c ross  

section of cadmium, and not to the presence of cadmium in the epithermal 

region, which depresses epithermal worths by only about 15% (Columns 2 

and 3). As noted previously, the epithermal importance function (adjoint 

f lux)  i s  strongly depressed by the cadmium sleeve (Figure 1). 

i ly understood on physical grounds; an epithermal neutron inside the sleeve 

has a good chance of returning to the sleeve as a thermalneutron, after several  

moderator collisions, rather than causing afission in the nearest  fuel elements 

(about nine inches away). 

This is read- 

X3nce it i s  understood that the effect of absorption on reactivity is negative, 
the minus sign will be omitted f r o m  reactivity values in this and future reports,  
except when needed for clarity. 
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* 

Diameter 
(in. ) 

Col 1 

.L 

TABLE 2- 

EPITHERMAL WORTHS AND DOPPLER COEFFICIENTS OF 
NATURAL-TUNGSTEN SLUGS 

Values Bare, Cadmium W a l l  Thickness (in.) 

0.062a 0.03 la 0.03 Id E pi the r mal 

Col 2 0.03 ia ’c l  Col 3 Col 4 I Col 5 I Col 6 Col 7 
Onlya, b 

0.438 

0.25 

(0.25 /0.438) 

0.438 

0.25 

( 0.25 / 0.438) 

Epithe rmal Worth (c ent s )  

5 .O 4.35 2.25 2.50 2.0 1.95 

1.95 1.70 0.89 0.98 - 0.84 

(0.39) (0.39) (0.40) (0.39) - - 

0.12 0.215 0.12 0.13 0.10 0.12 

0.052 0.095 0.052 0.057 - - 
(0.44) (0.44) (0.44) (0.44) - - 

Doppler Coefficient (cents/  1000°C) 

I 

a. Sample c ros s  sections used were those appropriate for  reactor calculations. 
b. Fluxes and adjoints used were those derived f rom reactor calculation without 

cadmium, but thermal-group contribution has been subtracted. 
c. Fluxes and adjoints used were those derived f rom reactor calculation with 

0.031-in. cadmium sleeve present, except that cadmium thermal  c ros s  
section has been set  equal to zero. 

d. Sample c ros s  sections used were those appropriate for  perturbation 
calculations. 

*Since it is understood that the effect of absorption on reactivity is negative, 
the minus sign will be omitted from reactivity values in this and future reports ,  
except when needed for clarity. 
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1 -  

2.0 

1.4 

1.6 

0.2 1 

1.6 

1.1 

0.68 

The reactivities of samples in the cadmium sleeve, recalculated with c ross  

sections appropriate fo r  unperturbed fluxes, a r e  given in Table 3, along with 

some experimental worths. 

1.95 
- 
- 
- 
- 

1.195 

0.76 

TABLE 3 

WORTHS O F  SAMPLES IN CADMIUM SLEEVE 
OF SGR-CA 

Worth (cents) Sample 
( 0.438 -in. diameter , 

4.0 -in. long) 

Natural W 

W -182 

W-183 

W-184 

W-186 
.I. 

Gold-' 

Depleted U 

::0.235-in. diameter, 3.683-in. long 

Values of the recalculated Doppler coefficient over the range from room 

temperature to 540°C a r e  0.10 #/lOOO°C under cadmium and 0.18 d / lOOO°C 

bare. 

4. Monte Carlo Calculations 

Work on a Monte Carlo calculation of resonance integrals and Doppler coef - 
ficients has started. 

routines. 

functions of energy, temperature, and position. 

deviation f rom flatness of spatial and lethargy distribution of the neutron flux, 

a s  well as interaction between overlapping resonances in different materials,  

will be taken into account automatically. Data preparation i s  absorbing most 

of the effort in this area. 

5. Self-shielding Calculations 

F o r  the most part, this will make use of existing sub- 

This calculation will allow all cross  sections to be put in as  explicit 

As a result, such effects a s  

Wigner's rational a p p r o ~ i m a t i o n ( ~ )  to the escape probability of a lump has 

been used to estimate the self-shielding of the nonresonant c ross  sections in 

NASA- CR - 5 48 8 8 
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tungsten and gold samples, and f r o m  this, to estimate the effect on reactivity 

of thermal expansion of the sample. 

F i r s t ,  consider the self-shielding of the l / v  c ros s  section. In most 

resonance-integral codes, the l / v  contribution to the resonance integral (or 

to the group cross  sections) i s  assumed to be infinitely dilute. Thus, the ef- 

fective resonance integral consists of a large, geometry-dependent t e r m  and 

a small, additive, constant term. Although this approximation i s  excellent in 

most cases,  it is obviously not very good when the lump is so thick that the 

l!v contribution i s  a reasonable fraction of the total calculated resonance inte- 

gral .  

3.683-in. long) being used to calibrate the SGR-CA oscillator, and possibly for 

standard-sized tungsten samples as well. 

This is the case fo r  the "thickest" gold sample (0.235-in. diameter by 

To estimate this effect, assume that the self-shielded l / v  contribution to 

the effective resonance integral i s  given by 

where I (E ) = l / v  contribution for effective cadmium-cutoff energy E 1 c  C '  
Ul(E) = l / v  c ros s  section at energy E, and 

G(al) = self-shielding function for  monoenergetic neutrons of energy E 

and c ross  section ol(E).  

1 Next, assume that G(a ) 1.: 1 1 t PC,(E) ( Wigner ' s  rational approximation), 

where I = mean chord length in lump = 4V/S, 

V/S = volume and exposed surface of lump, 

Za(E) = Nol(E) = macroscopic absorption c ros s  section, and 

N = density of absorber atoms in lump. 

The lump geometry can be conveniently expressed in t e rms  of the parameter 

s defined as 
-9 

s = l/NI =S/4NV. 

The parameter has the dimensions of a c ros s  section, and is equal to one- 

fourth of the lump surface a rea  per atom. It can be thought of a s  a c ross  
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section for escaping capture i n  the lump. 
the lump self-shielding: large s implies large escape probability, high dilution 

The ratio o l / s  i s  then a measure of 

- 
(s is directly proportional to S/M), small  u / s ,  1 - 

Then 12 = o l / s  and a 

The energy dependence of (T i s  given by (5 (E) = 

and Q = cr(vo). When all these substitutions a r e  

grat ionfor  I i s  

1 1 

0 

1 

and small  self-shielding. 

0 v /v(E), where vo =2200m/sec 

made, the result of the inte - 
0 0  

where (3 = (3 v /v(E ) i s  the l / v  cross section at cadmium cutoff. 
C 0 0  C 

F o r  a standard-size natural-tungsten sample, u = 19.2 b and s = 14.97 b; 
0 

taking the cadmiun-cutoff energy E f rom the tables of Stoughton et a1(8) to be 

0.622 ev 

effective resonance integral of 38.4 b. 

correction somewhat, mainly because the rational approximation overestimates 

self-shielding. 

C * 
yields a correction of 0.86 b to be subtracted from the calculated 

This result probably overestimates the 

In the Doppler measurements without cadmium, thermal expansion of the 

sample decreases  the self-shielding of the thermal-neutron cross  section, 

thereby increasing absorption in the sample. 

also been estimated with the rational approximation. 

Oeff of the thermal-neutron absorption c ross  section 0 i s  given by 0 

a/( 1 t a/ s). 

The magnitude of this effect has 

The self-shielded value 

= Go = ef f 
Differentiation yields 

where Q! i s  the linear coefficient of thermal  expansion of the sample, and T is 

the above expression has the value 4.6 x 10-6/oC. 

temperature. For a standard natural-tungsten sample, with Q! = 4.3 x 10 -6 / OC, 

Taking P = 20 rf for the 

:xThis energy corresponds to a cadmium thickness of 0.062 in. ,  twice the actual 
wall thickness, since a reactivity measurement cannot distinguish between a 
neutron captured in the sample and a neutron that leaves the sample and is 
then captured in the cadmium sleeve. 
reactivity measurement is thus twice that for  an activation measurement. 

The effective cadmium thickness for  a 
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thermal  worth yields an expansion reactivity coefficient, then, of -0.09 cents/ 

1000°C. This answer i s  large enough that it i s  clear that a more  accurate cal- 

culation must be done. Two experimental estimates of this effect will  be avail- 

able, the measured reactivity variation due to density variations among several  

natural-tungsten samples and the Doppler coefficient measured under cadmium. 

Under cadmium, of course, the expansion effect on reactivity i s  expected to be 

negligible. 

B. EXPERIMENT 

1. Activation Measurements 

Radial  f l u x  maps using cadmium-covered foils of dysprosium, indium, gold, 

tungsten, and cobalt a s  detectors are  being carr ied out. Each of these detectors 

i s  sensitive to a different portion of the epithermal spectrum, so that theresul ts  

of these measurements can be used to tes t  the validity of the calculated flux 

spectrum. 

project (Table l), most of the absorption in dysprosium i s  in group 14; in 

indium, group 13; in gold, group 12; in tungsten, group 11; and in cobalt, 

group 10. 

In the 15-group structure used in CAESAR calculations for this 

One set of maps with tungsten and gold foils was completed during this 

report  period. Results have not yet been compared with calculated values. 

Tungsten foils with thicknesses of 0.001, 0.005, and 0.010 in. were turned 

to 0.438 in. diameter and were weighed precisely by the AI Standards Labora- 

tory. 

measurement of the Doppler effect in W-186, they will be used only in the 

resonance-integral measurement. 

then, will  require precise measurements of the foil  and sample masses  and 

densities. 

Since resonance overlap with the cadmium covers may interfere with 

The separate measurement of I and dI/dT, 

The capsule used for measuring slug samples in the Advanced Doppler coef - 
ficients project is being modified to accept the tungsten samples with improved 

centering. 

Initial tungsten-foil irradiations were carr ied out in the SGR-CA to deter-  

mine optimum irradiation times and counting parameters.  
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2. Reactivity Measurements 

a. Initial Measurements on Heated Samples 

A second oscillator tube was assembled for use in elevated-temperature 

- measurements.  

report(2) except that it contains no graphite. Provision was made for  a i r  flow 

through the tube and for the exit of thermocouple and heater wires. 

It is similar to the tube described in the previous quarterly 

Two rods, 

I symmetrically located 24-3/8 in. above and below the center of the tube, were 

welded across  the interior.of the tube to act as mechanical stops for the sample 

2nd d-i-1mm-y ovens. 

the oscillator tube were fabricated. 

measurements were carr ied out on a standard-size natural-tungsten slug at 

temperatures up to 1251°K, with and without the cadmium sleeve. 

Several extra ovens  and hardware for moiint ing t h e m  i n s i d e  

With this tube in  the oscillator, reactivity 

Similar mea-  

surements were carr ied out with empty sample and dummy ovens, but a poor 
~ 

vacuum in the sample oven prevented heating it above 983°K. 

measurements a r e  shown in  Figures 2 and 3 ,  with smooth curves (fitted by eye) 

Results of these 

I 
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Figure 3 .  Reactivity Change from Room Temperature vs Temperature 
(under cadmium sleeve) 

drawn through the points. 

f rom the sample curves yields the curves in  Figure 4. 

net reactivity change of the natural-tungsten sample f rom room temperature to 

about 1250"K, both bare  and under cadmium. 

not only because of the crude method of arriving at  the final curves,  but also 

because of the necessity of making corrections to the data for  such effects as 

thermal  expansion, departure of the actual spectrum f rom the ideal, and possi-  

ble resonance overlap between cadmium and tungsten. 

corrections,  it is clear that the average reactivity coefficients of 0.12 (Cd) 

and 0.15 (bare) d/lOOO"C derived from Figure 4 a r e  of the same order  of mag- 

nitude a s  the calculated values. 

Point-by-point subtraction of the empty-oven curves 

These represent the 

These results a r e  preliminary, 

Even without these 
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Figure 4. Net Reactivity Change Above Room Temperature,  of 0.438-in. 
Natural-Tungsten Slug after Subtraction of Oven Reactivities 

One set  of measurements was made with an oven with a tantalum heat shield; 

all  other ovens had molybdenum heat shields. 

the resul ts  a r e  independent of the heat-shield material ,  within the accuracy of 

the experiment. 

As can be seen f rom Figure 2, 

The reactivity of a piece of Lavite oven-insulating mater ia l  with standard- 

The reason sample dimensions was measured up to 753°K without cadmium. 

for  this  measurement was to exaggerate whatever contribution the Lavite in the 

oven itself might make to the tungsten temperature coefficient of reactivity. 

The resulting temperature coefficient was positive and had the value of 

0. l o d l  1000°C. 

b. Auxiliary Measurements 

Measurements have been made with the 0.25 -in. -diameter natural-tungsten 

sample surrounded by an additional, thick cadmium cylinder and by a thick lead 
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cylinder. 

measured value f o r  no surrounding cylinder. 

made in the standard 0.03 1-in.-wall cadmium sleeve. 

These results a r e  presented in Table 4, along with the previously 

All these measurements were 

Cadmium 

Le ad 

None 

I '  

0.782 

0.841 

0.842 

TABLE 4 

E F F E C T  O F  SURROUNDING CYLINDERS ON 
EPICADMUM WORTH O F  0.25-in. - 

TUNGSTEN SLUG 
DIAMETER NATURAL- 

I 

Epic admium Worth Composition of 
Sur rounding Cylinder 

(0.438-in. OD, 0.255-in. ID) ( 4 )  

Comparison of the lead-cylinder and no-cylinder results again demonstrates 

the insignificance of heavy-element scattering effects. 

duction in worth due to the additional cadmium cylinder can be accounted for  by 

the reduction of the l / v  contribution to the effective resonance integral due to 

the la rger  effective cadmium cutoff energy. Another possible contribution to 

this worth decrease is the additional reduction in the fast-neutron source in the 

nearest  fuel elements. 

Most of the 0.06-d r e -  

Reactivity measurements on gold have been extended to both higher and lower 

The higher values were obtained values of S/M for  calibration of the oscillator. 

with four gold wires (each 0.030-in. diameter by 4.0-in. long), both closely 

packed and 0.25 in. apart, and with a single wire. 

applied to the surface for the four-wire measurements to get the proper effective 

surface. The low S/M was obtained with a solid gold cylinder, 0.67-in. diameter 

by 0.67-in. high. 

Dancoff corrections were 

These and previous results a r e  presented in Table 5. 

In Figure 5, worths per mole from these data a r e  plotted against ,/-. A 

straight line f i t s  the points well except for  the thickest cylinder. 
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TABLE 5 
EPICADMIUM REACTIVITIES OF GOLD SAMPLES 

Length I (in. ) 
D i a m e t e r  

(in. ) 
Epic  admium Worth 

(C) 
0.030 I 4.0 

F o u r  of above closely 
packed 

I 
Same, spaced 0.25 in. 

apart 

3.683 

0.235 0.67 I 0.67 

0.054 

0.183 

0.225 

1.195 

1.136 

/ 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

7672-2505 
F i g u r e  5. Reactivity per m o l e  v s  , / F M  for Gold 
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Epicadmiurn worths of a number of U238 samples of varying dimensions, 

depletions, and densities were also measured to obtain an independent check of 

the oscil lator calibration. Results a r e  tabulated below. 

~ 2 3 5  Content Diameter 
(70 1 (in. ) 

TABLE 6 
EPICADMIUM REACTIVITIES OF DEPLETED- 

URANIUM SAMPLES 

Epicadmium 
Length Worth 
(in. ) 

0.49 0.25 4.0 

0.438 (OD) 4.0 
0.49 

0.22 

0.22 0.46 15 4.238 

0.250 (ID) - 
0.438 4.0 

Results of axial t raverses  of an Sb-Be source with the cadmium sleeve pres-  

ent showed that the shape of the adjoint f l u x  for  the source neutrons (25 kev) was 

unaffected by the sleeve, a s  expected. 

0.284 

0.528 
- 

0.758 

0.690- 
.(r 

All reactivities were determined by numerical integration of the neutron- 
(9) kinetics equations, with the power history during oscillation a s  input data. 

c. Oxidation Experiment 

An experiment was performed in which air was suddenly admitted to an oven 

The discoloration observed on containing a natural-tungsten sample at 1000°C. 

the sample, although pronounced, w a s  localized near the air entrance. 

lographic examination of the sample indicated that the thickness of the oxide 

layer formed was less  than 0.3 micron. 

would produce little or no damage to a sample, an especially important con- 

sideration for  the enriched samples. 

Metal- 

It therefore appears that oven fai lure  
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C. RELATED PROJECTS (AEC-Sponsored Doppler Projects) 
I *  
I =  1. Advanced Doppler Coefficients 

A total of 11 reactor runs to  expose gold foils have been made with the im-  

proved multiple-sample apparatus. 

factor of three over the previous measurements and additional points have been 

obtained. 

The range in S / M  has been increased by a 

The RIFF-RAF'F resonance-integral code,( lo) recently obtainedfrom ANL, was 

adapted to run in the NAA computing system and has now been checked out. This 

code does not make use  of the asymptotic-source assumption, and thus repre-  

sents an improvement over TRIX or ZUT for treatment of the lowest gold and 

tung sten resonances. 

One set  of Doppler data f rom the original foil-wheel exposures has been com- 

pletely analyzed. 

cept at high S /M values, where some evidence of foil shadowing (eliminated in 

the new wheel) was observed. 

These data a r e  in good agreement with TRIX calculations ex- 

2. Fast-Spectrum Doppler Measurements 

Temperature-coefficient measurements have been made with samples of 

niobium, molybdenum, tungsten, lead, iron, and lavite in the standard (62-kev 

median fission energy) core  and in several  polyethylene blankets. 

Comparison of Th with ThoZ results and U238 with U23802 results indicates 

that oxygen has little effect on ihe Doppler coefficients of the oxides of these 

two isotopes. 

An alumina heater assembly, a mockup of a high-temperature thoria heater, 

has operated at 1570°K. 

The reactivities of samples of thorium and tungsten have been measured f rom 

300 down to 9 1 OK (thorium) and 20°K (tungsten) with the aid of a Joule-Thomson 

refrigerator in the oscillator bar. 

than twice that obtained for  the same temperature difference above 300°K. 

tungsten data have not been analyzed yet. 

The reactivity change for thorium is more  

The 
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J 

A computer program has been prepared to determine the best  temperature 

variation of the Doppler reactivity data. The computation is a least  squares 

analysis based on the assumption that the reactivity change with temperature 

(dp/dT) varies as T-’, where 

spectrum, and is expected to range f rom 0.5 to 1.5. 
i s  a parameter depending upon the neutron 
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cv. ACTIVITIES DURING NEXT REPORT PERIOD . . 
The RIFF-RAFF code will be used to examine problem areas  in calculations 

of effective resonance integrals of tungsten and gold. 

Final adjustments to the SGR-CA flux calculation will be made. Multigroup 

cross  sections and resonance integrals will be calculated at several  tempera- 

tures  up to  about 2500°K f o r  actual isotopic compositions of enriched samples. 

These c ross  sections, together with the new SGR-CA fluxes and adjoints, will 

be used to calculate the sample Doppler coefficients. 

Improved calculations of the thermal-expansion reactivity effect will be c a r  - 
ried out. 

Setup of the Monte Carlo calculation will be completed, and problem a reas  in 

i ung s ten  and gold calculations will be investigated. 

Resonance -integral and Doppler -coefficient reactivity measurements will be 

performed on enriched-tungsten samples. 

r ied out on natural tungsten. 

Activation measurements will be car - 

Flux mapping with resonance detectors will be completed and the results com- 

pared with those expected from calculated spectra. 

The f i r s t  high-temperature oven will be assembled and tested. If the tes t s  

a r e  successful, additional ovens will be assembled and reactivity measurements 

will be extended to higher temperatures. 

" 
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